×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

张云杰,E-mail:zhangyunjie1130@163.com

中图分类号:R656.7

文献标识码:A

DOI:10.3969/j.issn.1007-6948.2024.01.026

参考文献 1
Liao SS,Luo J,Kadier T,et al.Mitochondrial DNA release contributes to intestinal ischemia/reperfusion injury[J].Front Pharmacol,2022,13:854994.
参考文献 2
许叶文,王琼,周国儿,等.莫达非尼对大鼠肠缺血再灌注损伤的保护作用研究[J].中国临床药理学杂志,2022,38(14):1664-1667.
参考文献 3
Wang Y,Wen J,Almoiliqy M,et al.Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway[J].Oxid Med Cell Longev,2021,2021:5147069.
参考文献 4
Qiongyuan H,Huajian R,Jianan R,et al.Author Correction:Released mitochondrial DNA following intestinal ischemia reperfusion induces the inflammatory response and gut barrier dysfunction[J].Sci Rep,2022,12(1):2524.
参考文献 5
李毅,李坤河,温仕宏,等.JAK/STAT通路在大鼠肠缺血再灌注所致肠损伤中的作用[J].中国病理生理杂志,2011,27(12):2338-2344.
参考文献 6
Hu XY,Li J,Fu MR,et al.The JAK/STAT signaling pathway:from bench to clinic[J].Signal Transduct Target Ther,2021,6(1):402.
参考文献 7
Wang H,Huang R,Guo W,et al.RNA-binding protein CELF1 enhances cell migration,invasion,and chemoresistance by targeting ETS2 in colorectal cancer[J].Clin Sci(Lond),2020,134(14):1973-1990.
参考文献 8
Cox DC,Guan XN,Xia Z,et al.Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting[J].Hum Mol Genet,2020,29(10):1729-1744.
参考文献 9
Moon SY,Kim KD,Yoo J,et al.Phytochemicals targeting JAK-STAT pathways in inflammatory bowel disease:insights from animal models[J].Molecules,2021,26(9):2824.
参考文献 10
Wisidagama DR,Thummel CS.Regulation of Drosophila intestinal stem cell proliferation by enterocyte mitochondrial pyruvate metabolism[J].G3(Bethesda),2019,9(11):3623-3630.
参考文献 11
Bhattacharyya A,Chattopadhyay R,Mitra S,et al.Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J].Physiol Rev,2014,94(2):329-354.
参考文献 12
Yang S,Li X,Xiu M,et al.Flos puerariae ameliorates the intestinal inflammation of Drosophila via modulating the Nrf2/Keap1,JAK-STAT and Wnt signaling[J].Front Pharmacol,2022,13:893758.
参考文献 13
Yu L,Zhang Y,Chen Q,et al.Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway[J].Biomed Pharmacother,2022,149:112836.
参考文献 14
Li L,Sun L,Qiu Y,et al.Protective effect of stachydrine against cerebral ischemia-reperfusion injury by reducing inflammation and apoptosis through P65 and JAK2/STAT3 signaling pathway[J].Front Pharmacol,2020,11:64.
参考文献 15
Cao F,Tian XY,Li ZW,et al.Suppression of NLRP3 inflammasome by erythropoietin via the EPOR/JAK2/STAT3 pathway contributes to attenuation of acute lung injury in mice[J].Front Pharmacol,2020,11:306.
参考文献 16
Peng Z,Ban K,Wawrose RA,et al.Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion[J].Shock,2015,43(4):327-333.
参考文献 17
Nadatani Y,Watanabe T,Shimada S,et al.Microbiome and intestinal ischemia/reperfusion injury[J].J Clin Biochem Nutr,2018,63(1):26-32.
参考文献 18
杨芃,魏明,李响,等.程序性坏死参与大鼠肠缺血再灌注所致肺损伤的发生[J].中山大学学报(医学科学版),2017,38(3):321-326.
参考文献 19
Mikhed Y,Daiber A,Steven S.Mitochondrial oxidative stress,mitochondrial DNA damage and their role in age-related vascular dysfunction[J].Int J Mol Sci,2015,16(7):15918-15953.
参考文献 20
Kalra RS,Kumar S,Tomar D.Editorial:Oxidative stress link associated with mitochondrial bioenergetics:relevance in cell aging and age-related pathologies[J].Front Cell Dev Biol,2023,11:1273420.
参考文献 21
Bugger H,Pfeil K.Mitochondrial ROS in myocardial ischemia reperfusion and remodeling[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(7):165768.
参考文献 22
Li GY,Wang S,Fan Z.Oxidative stress in intestinal ischemia-reperfusion[J].Front Med(Lausanne),2022,8:750731.
参考文献 23
巨虎,刘川川,王虎,等.岩藻多糖调节JAK2/STAT3信号通路保护神经元免受缺氧缺糖/再灌注损伤[J].中国高原医学与生物学杂志,2022,43(1):7-17.
参考文献 24
刘庆,卢蓉,郝莉霞.Nrf2基因对缺氧缺血性脑损伤新生大鼠脑组织氧化应激和JAK2/STAT3信号通路的影响[J].局解手术学杂志,2020,29(8):604-609.
参考文献 25
彭成,刘佩雷,陶钧,等.急性脊髓损伤后炎症反应、自噬和凋亡相关因子的变化以及JAK2/STAT3信号通路研究[J].转化医学杂志,2021,10(2):83-88.
参考文献 26
Billah M,Ridiandries A,Allahwala UK,et al.Remote ischemic preconditioning induces cardioprotective autophagy and signals through the IL-6-dependent JAK-STAT pathway[J].Int J Mol Sci,2020,21(5):E1692.
参考文献 27
Xie J,Wu X,Zheng S,et al.Aligned electrospun poly(L-lactide)nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways[J].J Nanobiotechnology,2022,20(1):342.
参考文献 28
Kim SY,Nair MG.Macrophages in wound healing:activation and plasticity[J].Immunol Cell Biol,2019,97(3):258-267.
参考文献 29
Mai S,Liu L,Jiang J,et al.Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase[J].Cell Prolif,2021,54(2):e12960.
参考文献 30
De Santa F,Vitiello L,Torcinaro A,et al.The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J].Antioxid Redox Signal,2019,30(12):1553-1598.
参考文献 31
王羡,王红霞,潘俊斐,等.lncRNA Tmevpg1对小鼠自噬和JAK-STAT信号通路关键信号分子表达水平的影响[J].中国细胞生物学学报,2019,41(7):1308-1319.
参考文献 32
Chen R,Wang J,Dai X,et al.Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis[J].Arthritis Res Ther,2022,24(1):266.
参考文献 33
Brennan JJ,Gilmore TD.Evolutionary origins of toll-like receptor signaling[J].Mol Biol Evol,2018,35(7):1576-1587.
参考文献 34
张贻帼,景祎馨,廖师师,等.JAK2/STAT3通路通过调控巨噬细胞极化在肠缺血再灌注损伤中的作用[J].武汉大学学报(医学版),2023,44(3):286-292.
参考文献 35
Abousaad S,Ahmed F,Abouzeid A,Ongeri EM.Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury[J].Physiol Rep,2022,10(18):e15468-e15468.
目录contents

    摘要

    缺血再灌注(I/R)是指组织因各种原因引起缺血,一段时间后恢复血供,引起组织细胞再次损伤的临床症状。肠道是I/R损伤发生的常见器官,其发生具有突然性及多样性,临床难以精准预测及有效预防,因此目前研究多集中于再灌注期的症状缓解及组织保护策略上。多种信号通路参与肠I/R损伤的过程,本研究综述Janus激酶/信号转导与转录激活因子(JAK-STAT)信号通路在肠I/R损伤过程中的作用,以期为肠I/R相关治疗提供思路。

  • 肠缺血再灌注(ischemia/reperfusion,I/R)损伤是临床常见的肠道病理过程[1],可继发于多种病理条件下,如急性休克、小肠移植、肠系膜血管栓塞等。肠道极易发生缺血性损伤,一方面,人体血供下降时,会优先将血液供应给心、脑等器官,肠道血供减少;另一方面,绒毛尖端的肠上皮细胞位于中央小动脉的末端位置,本身氧分压较低,所以更容易发生缺血损伤[1]。由于肠绒毛中毛细血管环的特殊分布,肠道对I/R敏感,常导致肠黏膜屏障损伤。肠道是休克中最早受损,最后恢复的器官。

  • 缺血再灌注分为两个阶段:缺血阶段和再灌注阶段。在缺血阶段,局部细胞组织无法得到足够的氧,从而无法合成足够的三磷酸腺苷(ATP),使局部组织缺少运行所需的能量,同时,有氧代谢途径无法运行而进行无氧代谢,不仅无法提供足够的能量,而且引起乳酸等有害物质堆积,造成器官损伤。其次,血流再灌注和再充氧过程中产生的大量活性氧(reactive oxygen species,ROS),引发氧化应激反应,进而导致肠黏膜屏障破坏、血管通透性增加、细菌易位,以及炎症介质和凋亡因子的释放[2]。肠I/R损伤在组织学上可降低绒毛高度,增加细胞浸润,加重黏膜脱落[3],破坏肠黏膜屏障功能。此外,肿瘤坏死因子(TNF)-α、白细胞介素(IL)-6、IL-1β等促炎因子被释放到血清中,可能会引发全身炎症反应综合征、多器官功能障碍综合征等[4]

  • Janus激酶/信号转导与转录激活因子(janus kinase/signal transducers and activators of transcription,JAK/STAT)信号通路与肠I/R所致肠损伤的发生有密切的关系,通过氧化应激、中性粒细胞的聚集、肠屏障功能等影响肠I/R损伤[5]。与其他信号通路相比,JAK-STAT信号通路拥有相对简单与清晰的通路结构组成:首先是酪氨酸激酶受体接收信号,之后酪氨酸激酶JAK传递信号,最后转录因子STAT调控下游产生效应。JAK是一类非跨膜型的酪氨酸激酶,其活化受到配体与受体的影响,当二者结合后,JAK的活化可使自身磷酸化,此时的JAK使下游的酪氨酸残基磷酸化,从而完成信号传递的过程。在收到JAK磷酸化修饰后,转录因子STAT活化,其蛋白二聚并进入细胞核结合靶基因,以此调控下游基因的转录。

  • 1 JAK-STAT概述

  • JAK-STAT信号转导通路家族,有典型和非典型两种激活途径[6]。典型激活途径中,细胞配体与其受体相互作用导致受体二聚,JAK在配体和受体结合诱导下磷酸化,结合受体在活化的JAK影响下使自身酪氨酸磷酸化,STAT被招募,在形成的STATs停靠位点上对接,并在受到JAK磷酸化后与受体分离,通过sh2结构域-磷酸酪氨酸相互作用形成同源二聚体或异源二聚体。这些二聚体转运到靶基因启动子上,调控靶基因的转录。非典型激活途径下,未磷酸化的STAT池的一部分位于与核中等位常染色体基因异染色质蛋白-1(HP1)相关的异染色质上。JAK或其他激酶诱导STAT的激活,使HP1与异染色质分离,磷酸化的STAT与常小体上的认知位点结合,调节基因转录。

  • JAK是一类非受体酪氨酸激酶家族,已发现的有4个成员:JAK1、JAK2、JAK3、TYK2。STAT为JAK的底物,已发现7个家族成员:STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b和STAT6,其N端具有SH2结构域和核定位信号(NLS),中间为DNA结合域,C端有保守的、对其活化至关重要的酪氨酸残基。STAT被JAK磷酸化后发生二聚化,然后穿过核膜进入核内调节相关基因的表达,这条信号通路即为JAK-STAT途径。

  • 2 JAK-STAT信号通路与肠I/R损伤

  • 2.1 炎症反应

  • 炎症是肠I/R损伤的主要特征之一。肠I/R诱导的损伤有多种机制,促炎反应在其发病机制中起着重要作用。有证据表明,白细胞黏附会增加ROS和其他促炎介质的产生[7]。白细胞活化会引起强烈的血管收缩作用,导致低灌注甚至无复流现象,微循环完全停止[8]。减少ROS的产生和减轻促炎反应可以显著减少I/R引起的损伤。

  • JAK-STAT信号通路可以调节肠干细胞(ISCs)的增殖和肠道稳态。在炎症状态下,JAK-STAT通路被激活以促进ISCs的增殖和分化[9]。与此同时,损伤的肠道会产生大量ROS并以此来诱导氧化应激,导致肠上皮损伤和ISCs过度增殖[10]。肠I/R损伤中,胃肠道是ROS的主要来源,虽然有肠上皮的保护屏障,但摄入的物质和病原体可以通过激活上皮细胞、多形核中性粒细胞(PMNs)和巨噬细胞来产生炎症细胞因子,以及其他进一步促进氧化应激的介质而引起炎症[11]。JAK-STAT信号通路的激活与胃肠道炎症和ISCs增殖相关,这可能会加速炎症性肠病(inflammatory bowel disease,IBD)的发展[12]。通过降低炎症因子抑制JAK-STAT信号通路,可维持炎症环境下肠道稳态。

  • 在肠道I/R损伤过程中,一系列趋化因子和炎症因子(如核因子-κB)的激活导致循环吞噬细胞的激活,放大肠道炎症级联反应,引发全身炎症反应和远端器官损伤。JAK2-STAT3是一种重要的免疫信号通路,其参与炎症反应并在其中起重要的作用。STAT3受JAK2介导的磷酸化刺激,缺血时,JAK2磷酸化增加,STAT3磷酸化增加,炎症因子释放增加[13]。JAK2/STAT3信号通路被激活,可增加炎症相关蛋白编码基因的表达(如高迁移率族蛋白B1)的表达,加重缺血后炎症反应[14]。抑制P65/JAK2/STAT3的磷酸化可减轻缺血后炎症反应。另外,有研究报道可以通过JAK2/STAT3信号通路调控NLRP3炎症小体,其激活与抑制可实现对炎症级联的增强与减弱[15]

  • 2.2 氧化应激

  • 正常的细胞代谢会产生ROS,少量和适量的ROS对人体不仅没有危害,还有诸多好处,如杀死入侵人体的病原体,或是促进伤口愈合,加速组织的修复等;然而,在肠I/R过程中,脂质过氧化与炎症因子的释放产生过多的ROS,是导致再灌注后组织氧化和肠上皮细胞损伤的重要条件[16]。一方面,缺血阶段局部缺氧,合成障碍使ATP匮乏,细胞内酸性物质堆积导致酸中毒,再灌注后血供恢复,但细胞内钙超载和ROS生成会导致大量炎性细胞聚集,加重肠道内炎症反应和肠上皮细胞损伤[17];另一方面,ROS大量产生,胞内DNA、脂质和蛋白质受氧化应激反应影响大量损伤,细胞结构受到破坏,引起细胞死亡[18]。当氧气在再灌注过程中恢复时,受损细胞和组织中大量的ROS可以攻击几乎所有的细胞内生物分子(如细胞膜、细胞器甚至DNA),这种氧化应激通过信号转导途径破坏上皮细胞的动态稳态,从而导致大量炎症介质的释放,诱导细胞凋亡,破坏肠屏障功能,加剧再灌注后的损伤。

  • 线粒体在细胞的有氧代谢中扮演重要角色,线粒体DNA(mtDNA)参与细胞的氧化磷酸化,维持正常的线粒体功能。mtDNA被破坏后,ROS的产生增加,mtDNA释放到细胞质中诱导促炎介质和促凋亡因子的激活[19]。此外,线粒体呼吸链调节ROS的产生。线粒体复合物I和III在氧化过程中通过电子泄漏产生ROS[20]。在缺血过程中,线粒体氧化应激相当温和,但在再灌注开始时活性氧ROS爆发以及缺血后数小时和数天内更为明显[21]

  • JAK-STAT信号通路中,除STAT4外的所有STATs都存在于线粒体中,它们对促进氧化磷酸化和膜通透性具有重要意义,抑制其发挥作用可以减轻肠I/R损伤过程中的氧化应激、保护肠道组织。STAT3定位于内质网,有助于抵抗氧化应激引起的细胞凋亡[6]。STAT信号通过JAK2途径作用于细胞内ROS,氧化应激激活JAK/STAT可加重肠I/R损伤;相反,JAK/STAT信号通路的抑制剂,如丙酮酸,不仅对氧化应激反应有抑制作用,还可以减少中性粒细胞浸润,调节微循环,抑制细胞凋亡[22]。通过抑制JAK/STAT信号通路,可以使细胞免受缺氧缺糖/再灌注损伤(OGD/RP)诱导的氧化应激、自噬和凋亡作用影响[23],保护肠道屏障,从而减轻肠I/R损伤。Nrf2基因的过表达可对JAK2/STAT3信号通路起抑制作用,通过这种方法以抑制大鼠的氧化应激,同时减轻其炎症反应[24],通过这两方面来达到减轻大鼠缺氧缺血性损伤的目的。

  • 2.3 细胞自噬

  • 自噬(autophagy,ATG)是细胞内物质周转的重要过程,线粒体自噬能够清除损伤、老化的线粒体,然后通过与线粒体生物合成相配合,从而对线粒体质量进行控制,最终起到调控线粒体的数量、分布及功能的作用,是选择性自噬的一种。研究认为器官I/R中,在线粒体分裂增加的情况下,其自噬减少因而引起数量平衡被打破,损伤的线粒体无法被及时清除而大量堆积从而造成细胞损伤[21]。肠I/R损伤过程中,缺血引发线粒体缺氧,在线粒体大量损伤的基础上,大量活性氧产生,进一步损伤线粒体的同时也使氧化应激更加严重,导致肠I/R造成的损伤进一步扩大。因此,肠I/R过程中,通过特定途径增强自噬,从而清除受损的线粒体,可以保持线粒体的质量和数量,减轻肠道组织损伤。

  • JAK2/STAT3参与自噬活动的调节,生理状态下非磷酸化的JAK2/STAT3在机体受到外界刺激时,可在短时间内发生磷酸化转化,通过酪氨酸蛋白激酶结合位点与IL-6、TNF-α等相应受体相结合,激活下游酪氨酸残基,发挥生物学效应[25]。因此,用JAK2抑制剂或STAT3 siRNA阻断STAT3磷酸化,对抑制JAK2/STAT3信号通路,降低肠黏膜上皮细胞凋亡水平、增强自噬,保护肠黏膜屏障,减轻肠I/R中肠道组织损伤有积极意义。此外,还有研究显示,IL-6激活JAK激酶,通过JAK-STAT信号通路,在I/R前以剂量依赖方式,增强体外自噬,而不影响其他激酶途径[26]

  • 2.4 巨噬细胞极化

  • 巨噬细胞是先天免疫反应的重要成员,与组织的炎症反应程度有很大关联,同样在肠I/R损伤进展中发挥着重要作用。巨噬细胞可以表现出一系列不同的激活表型,以响应不同的微环境或外源性刺激。巨噬细胞极化并不是巨噬细胞的一种长期状态,而是巨噬细胞在某一时间点的激活状态。

  • 当巨噬细胞暴露于入侵细胞的病原体或细菌时,它们通常极化为M1表型(经典激活表型)。M1巨噬细胞通常出现在由toll样受体(TLR)或干扰素(IFN)信号通路控制的促炎环境中,因此表达出促炎作用,通过促炎细胞因子和一氧化氮(NO)的分泌抑制细胞增殖并引起组织损伤[27],在肠I/R进程中,M1表型可加重肠道炎症反应,破坏肠黏膜屏障,损伤肠道组织。M2巨噬细胞是另一种激活表型,存在于T2反应主导的环境中,由IL-4或IL-13诱导[28]。M2巨噬细胞表达高水平的精氨酸酶1(Arginase-1,Arg-1),它催化鸟氨酸的产生。鸟氨酸是细胞产生多胺的直接底物,是M2巨噬细胞完成胶原合成、增殖、组织重塑等功能所必需的[29]。这些细胞促进细胞增殖、组织修复、血管生成和吞噬作用,以降低炎症并在炎症事件后“清理”,在肠I/R损伤过程中,能够保护肠黏膜屏障,降低炎症反应造成的破坏,减轻肠道组织损伤。

  • 经典激活(M1)巨噬细胞分泌促炎因子,并表现出增强的杀微生物活性和高抗原呈递能力[30]。这些特征是由IFN-γ介导的JAK/STAT信号促进的。IFN-γ是激活JAK-STAT信号通路的关键[31]。STAT1是M1巨噬细胞极化的重要中介,其活性对M1极化至关重要[32]。M1巨噬细胞极化的另一个关键机制是核因子-κB(NF-κB)信号通路。巨噬细胞细胞膜上TLR的激活启动了下游级联,激活NF-κB通路,并促进促炎介质的后续释放[33]

  • 肠I/R损伤激活JAK2/STAT3通路,通路的激活进一步加重肠道损伤,破坏肠道环境,损伤肠黏膜屏障,抑制其通路可减轻肠道损伤。肠I/R过程中JAK2/STAT3通路诱导巨噬细胞向M1极化。抑制JAK2/STAT3通路可诱导巨噬细胞M2极化,减轻Caco-2细胞的OGD/R损伤[34]。促进巨噬细胞由M1向M2表型的转变,可发挥抗炎作用,降低肠道炎症对肠黏膜屏障的破坏,保护肠道组织,对减轻肠I/R损伤具有重要作用。巨噬细胞中IL-6/STAT3信号通路的激活在巨噬细胞产生趋化因子中起着关键作用,并参与M1/M2巨噬细胞极化。此外,STAT3的磷酸化是与巨噬细胞激活状态相关的关键事件[35]

  • 3 结论与展望

  • 肠I/R损伤是临床常见的病理改变,JAK/STAT信号通路在肠I/R损伤中发挥重要作用。通过JAK/STAT信号通路调节炎症反应、氧化应激、细胞自噬以及巨噬细胞极化等,对减轻肠I/R损伤有积极意义。JAK/STAT信号通路调控肠道I/R损伤的作用机制尚未完全阐明,深入研究有助于更好地了解肠I/R损伤的病理过程,以期为靶向药物治疗的研究提供分子基础。

  • 参考文献

    • [1] Liao SS,Luo J,Kadier T,et al.Mitochondrial DNA release contributes to intestinal ischemia/reperfusion injury[J].Front Pharmacol,2022,13:854994.

    • [2] 许叶文,王琼,周国儿,等.莫达非尼对大鼠肠缺血再灌注损伤的保护作用研究[J].中国临床药理学杂志,2022,38(14):1664-1667.

    • [3] Wang Y,Wen J,Almoiliqy M,et al.Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway[J].Oxid Med Cell Longev,2021,2021:5147069.

    • [4] Qiongyuan H,Huajian R,Jianan R,et al.Author Correction:Released mitochondrial DNA following intestinal ischemia reperfusion induces the inflammatory response and gut barrier dysfunction[J].Sci Rep,2022,12(1):2524.

    • [5] 李毅,李坤河,温仕宏,等.JAK/STAT通路在大鼠肠缺血再灌注所致肠损伤中的作用[J].中国病理生理杂志,2011,27(12):2338-2344.

    • [6] Hu XY,Li J,Fu MR,et al.The JAK/STAT signaling pathway:from bench to clinic[J].Signal Transduct Target Ther,2021,6(1):402.

    • [7] Wang H,Huang R,Guo W,et al.RNA-binding protein CELF1 enhances cell migration,invasion,and chemoresistance by targeting ETS2 in colorectal cancer[J].Clin Sci(Lond),2020,134(14):1973-1990.

    • [8] Cox DC,Guan XN,Xia Z,et al.Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting[J].Hum Mol Genet,2020,29(10):1729-1744.

    • [9] Moon SY,Kim KD,Yoo J,et al.Phytochemicals targeting JAK-STAT pathways in inflammatory bowel disease:insights from animal models[J].Molecules,2021,26(9):2824.

    • [10] Wisidagama DR,Thummel CS.Regulation of Drosophila intestinal stem cell proliferation by enterocyte mitochondrial pyruvate metabolism[J].G3(Bethesda),2019,9(11):3623-3630.

    • [11] Bhattacharyya A,Chattopadhyay R,Mitra S,et al.Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J].Physiol Rev,2014,94(2):329-354.

    • [12] Yang S,Li X,Xiu M,et al.Flos puerariae ameliorates the intestinal inflammation of Drosophila via modulating the Nrf2/Keap1,JAK-STAT and Wnt signaling[J].Front Pharmacol,2022,13:893758.

    • [13] Yu L,Zhang Y,Chen Q,et al.Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway[J].Biomed Pharmacother,2022,149:112836.

    • [14] Li L,Sun L,Qiu Y,et al.Protective effect of stachydrine against cerebral ischemia-reperfusion injury by reducing inflammation and apoptosis through P65 and JAK2/STAT3 signaling pathway[J].Front Pharmacol,2020,11:64.

    • [15] Cao F,Tian XY,Li ZW,et al.Suppression of NLRP3 inflammasome by erythropoietin via the EPOR/JAK2/STAT3 pathway contributes to attenuation of acute lung injury in mice[J].Front Pharmacol,2020,11:306.

    • [16] Peng Z,Ban K,Wawrose RA,et al.Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion[J].Shock,2015,43(4):327-333.

    • [17] Nadatani Y,Watanabe T,Shimada S,et al.Microbiome and intestinal ischemia/reperfusion injury[J].J Clin Biochem Nutr,2018,63(1):26-32.

    • [18] 杨芃,魏明,李响,等.程序性坏死参与大鼠肠缺血再灌注所致肺损伤的发生[J].中山大学学报(医学科学版),2017,38(3):321-326.

    • [19] Mikhed Y,Daiber A,Steven S.Mitochondrial oxidative stress,mitochondrial DNA damage and their role in age-related vascular dysfunction[J].Int J Mol Sci,2015,16(7):15918-15953.

    • [20] Kalra RS,Kumar S,Tomar D.Editorial:Oxidative stress link associated with mitochondrial bioenergetics:relevance in cell aging and age-related pathologies[J].Front Cell Dev Biol,2023,11:1273420.

    • [21] Bugger H,Pfeil K.Mitochondrial ROS in myocardial ischemia reperfusion and remodeling[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(7):165768.

    • [22] Li GY,Wang S,Fan Z.Oxidative stress in intestinal ischemia-reperfusion[J].Front Med(Lausanne),2022,8:750731.

    • [23] 巨虎,刘川川,王虎,等.岩藻多糖调节JAK2/STAT3信号通路保护神经元免受缺氧缺糖/再灌注损伤[J].中国高原医学与生物学杂志,2022,43(1):7-17.

    • [24] 刘庆,卢蓉,郝莉霞.Nrf2基因对缺氧缺血性脑损伤新生大鼠脑组织氧化应激和JAK2/STAT3信号通路的影响[J].局解手术学杂志,2020,29(8):604-609.

    • [25] 彭成,刘佩雷,陶钧,等.急性脊髓损伤后炎症反应、自噬和凋亡相关因子的变化以及JAK2/STAT3信号通路研究[J].转化医学杂志,2021,10(2):83-88.

    • [26] Billah M,Ridiandries A,Allahwala UK,et al.Remote ischemic preconditioning induces cardioprotective autophagy and signals through the IL-6-dependent JAK-STAT pathway[J].Int J Mol Sci,2020,21(5):E1692.

    • [27] Xie J,Wu X,Zheng S,et al.Aligned electrospun poly(L-lactide)nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways[J].J Nanobiotechnology,2022,20(1):342.

    • [28] Kim SY,Nair MG.Macrophages in wound healing:activation and plasticity[J].Immunol Cell Biol,2019,97(3):258-267.

    • [29] Mai S,Liu L,Jiang J,et al.Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase[J].Cell Prolif,2021,54(2):e12960.

    • [30] De Santa F,Vitiello L,Torcinaro A,et al.The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J].Antioxid Redox Signal,2019,30(12):1553-1598.

    • [31] 王羡,王红霞,潘俊斐,等.lncRNA Tmevpg1对小鼠自噬和JAK-STAT信号通路关键信号分子表达水平的影响[J].中国细胞生物学学报,2019,41(7):1308-1319.

    • [32] Chen R,Wang J,Dai X,et al.Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis[J].Arthritis Res Ther,2022,24(1):266.

    • [33] Brennan JJ,Gilmore TD.Evolutionary origins of toll-like receptor signaling[J].Mol Biol Evol,2018,35(7):1576-1587.

    • [34] 张贻帼,景祎馨,廖师师,等.JAK2/STAT3通路通过调控巨噬细胞极化在肠缺血再灌注损伤中的作用[J].武汉大学学报(医学版),2023,44(3):286-292.

    • [35] Abousaad S,Ahmed F,Abouzeid A,Ongeri EM.Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury[J].Physiol Rep,2022,10(18):e15468-e15468.

  • 参考文献

    • [1] Liao SS,Luo J,Kadier T,et al.Mitochondrial DNA release contributes to intestinal ischemia/reperfusion injury[J].Front Pharmacol,2022,13:854994.

    • [2] 许叶文,王琼,周国儿,等.莫达非尼对大鼠肠缺血再灌注损伤的保护作用研究[J].中国临床药理学杂志,2022,38(14):1664-1667.

    • [3] Wang Y,Wen J,Almoiliqy M,et al.Sesamin protects against and ameliorates rat intestinal ischemia/reperfusion injury with involvement of activating Nrf2/HO-1/NQO1 signaling pathway[J].Oxid Med Cell Longev,2021,2021:5147069.

    • [4] Qiongyuan H,Huajian R,Jianan R,et al.Author Correction:Released mitochondrial DNA following intestinal ischemia reperfusion induces the inflammatory response and gut barrier dysfunction[J].Sci Rep,2022,12(1):2524.

    • [5] 李毅,李坤河,温仕宏,等.JAK/STAT通路在大鼠肠缺血再灌注所致肠损伤中的作用[J].中国病理生理杂志,2011,27(12):2338-2344.

    • [6] Hu XY,Li J,Fu MR,et al.The JAK/STAT signaling pathway:from bench to clinic[J].Signal Transduct Target Ther,2021,6(1):402.

    • [7] Wang H,Huang R,Guo W,et al.RNA-binding protein CELF1 enhances cell migration,invasion,and chemoresistance by targeting ETS2 in colorectal cancer[J].Clin Sci(Lond),2020,134(14):1973-1990.

    • [8] Cox DC,Guan XN,Xia Z,et al.Increased nuclear but not cytoplasmic activities of CELF1 protein leads to muscle wasting[J].Hum Mol Genet,2020,29(10):1729-1744.

    • [9] Moon SY,Kim KD,Yoo J,et al.Phytochemicals targeting JAK-STAT pathways in inflammatory bowel disease:insights from animal models[J].Molecules,2021,26(9):2824.

    • [10] Wisidagama DR,Thummel CS.Regulation of Drosophila intestinal stem cell proliferation by enterocyte mitochondrial pyruvate metabolism[J].G3(Bethesda),2019,9(11):3623-3630.

    • [11] Bhattacharyya A,Chattopadhyay R,Mitra S,et al.Oxidative stress:an essential factor in the pathogenesis of gastrointestinal mucosal diseases[J].Physiol Rev,2014,94(2):329-354.

    • [12] Yang S,Li X,Xiu M,et al.Flos puerariae ameliorates the intestinal inflammation of Drosophila via modulating the Nrf2/Keap1,JAK-STAT and Wnt signaling[J].Front Pharmacol,2022,13:893758.

    • [13] Yu L,Zhang Y,Chen Q,et al.Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway[J].Biomed Pharmacother,2022,149:112836.

    • [14] Li L,Sun L,Qiu Y,et al.Protective effect of stachydrine against cerebral ischemia-reperfusion injury by reducing inflammation and apoptosis through P65 and JAK2/STAT3 signaling pathway[J].Front Pharmacol,2020,11:64.

    • [15] Cao F,Tian XY,Li ZW,et al.Suppression of NLRP3 inflammasome by erythropoietin via the EPOR/JAK2/STAT3 pathway contributes to attenuation of acute lung injury in mice[J].Front Pharmacol,2020,11:306.

    • [16] Peng Z,Ban K,Wawrose RA,et al.Protection by enteral glutamine is mediated by intestinal epithelial cell peroxisome proliferator-activated receptor-γ during intestinal ischemia/reperfusion[J].Shock,2015,43(4):327-333.

    • [17] Nadatani Y,Watanabe T,Shimada S,et al.Microbiome and intestinal ischemia/reperfusion injury[J].J Clin Biochem Nutr,2018,63(1):26-32.

    • [18] 杨芃,魏明,李响,等.程序性坏死参与大鼠肠缺血再灌注所致肺损伤的发生[J].中山大学学报(医学科学版),2017,38(3):321-326.

    • [19] Mikhed Y,Daiber A,Steven S.Mitochondrial oxidative stress,mitochondrial DNA damage and their role in age-related vascular dysfunction[J].Int J Mol Sci,2015,16(7):15918-15953.

    • [20] Kalra RS,Kumar S,Tomar D.Editorial:Oxidative stress link associated with mitochondrial bioenergetics:relevance in cell aging and age-related pathologies[J].Front Cell Dev Biol,2023,11:1273420.

    • [21] Bugger H,Pfeil K.Mitochondrial ROS in myocardial ischemia reperfusion and remodeling[J].Biochim Biophys Acta Mol Basis Dis,2020,1866(7):165768.

    • [22] Li GY,Wang S,Fan Z.Oxidative stress in intestinal ischemia-reperfusion[J].Front Med(Lausanne),2022,8:750731.

    • [23] 巨虎,刘川川,王虎,等.岩藻多糖调节JAK2/STAT3信号通路保护神经元免受缺氧缺糖/再灌注损伤[J].中国高原医学与生物学杂志,2022,43(1):7-17.

    • [24] 刘庆,卢蓉,郝莉霞.Nrf2基因对缺氧缺血性脑损伤新生大鼠脑组织氧化应激和JAK2/STAT3信号通路的影响[J].局解手术学杂志,2020,29(8):604-609.

    • [25] 彭成,刘佩雷,陶钧,等.急性脊髓损伤后炎症反应、自噬和凋亡相关因子的变化以及JAK2/STAT3信号通路研究[J].转化医学杂志,2021,10(2):83-88.

    • [26] Billah M,Ridiandries A,Allahwala UK,et al.Remote ischemic preconditioning induces cardioprotective autophagy and signals through the IL-6-dependent JAK-STAT pathway[J].Int J Mol Sci,2020,21(5):E1692.

    • [27] Xie J,Wu X,Zheng S,et al.Aligned electrospun poly(L-lactide)nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways[J].J Nanobiotechnology,2022,20(1):342.

    • [28] Kim SY,Nair MG.Macrophages in wound healing:activation and plasticity[J].Immunol Cell Biol,2019,97(3):258-267.

    • [29] Mai S,Liu L,Jiang J,et al.Oesophageal squamous cell carcinoma-associated IL-33 rewires macrophage polarization towards M2 via activating ornithine decarboxylase[J].Cell Prolif,2021,54(2):e12960.

    • [30] De Santa F,Vitiello L,Torcinaro A,et al.The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration[J].Antioxid Redox Signal,2019,30(12):1553-1598.

    • [31] 王羡,王红霞,潘俊斐,等.lncRNA Tmevpg1对小鼠自噬和JAK-STAT信号通路关键信号分子表达水平的影响[J].中国细胞生物学学报,2019,41(7):1308-1319.

    • [32] Chen R,Wang J,Dai X,et al.Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis[J].Arthritis Res Ther,2022,24(1):266.

    • [33] Brennan JJ,Gilmore TD.Evolutionary origins of toll-like receptor signaling[J].Mol Biol Evol,2018,35(7):1576-1587.

    • [34] 张贻帼,景祎馨,廖师师,等.JAK2/STAT3通路通过调控巨噬细胞极化在肠缺血再灌注损伤中的作用[J].武汉大学学报(医学版),2023,44(3):286-292.

    • [35] Abousaad S,Ahmed F,Abouzeid A,Ongeri EM.Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury[J].Physiol Rep,2022,10(18):e15468-e15468.

  • 用微信扫一扫

    用微信扫一扫